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Abstract. Tlie process o f  random sequential adsorption in one dimension is gencralizcd BO 
that the rate at which a particle is placed in an empty space is dependent on the size o f  thc 
space being destroyed and  on^ the sizcs,of lhe two spacer crcated on either side of thc 
particle. We write down the equation for lhis process involving p ( r ) ,  the probability o f  
choosing lo deposit a particle of size 2, and F(x,g[z ) ,  the rate at which spaces of length I 
andgarecrcaled from aspaceoflengtlix+l.+r,given that aparticleofsi~~eisdeposited. 
A scaling theory is given for tliis process and solutions are presented for two special cascs. 
The results of a numerical simulation of a third case are presented. 

1. Introduction 

When particles are deposited irreversibly onto a surface there are two characteristic 
time scales: the time between depositions, fd, and the time taken for the particles on 
the surface to reorganize, I,. If &>>Ir, the particles on the surface have time to move 
around between depositions and the distribution of particles on the surface is an equili- 
brium distribution. Conversely, if I ~ C C I ,  the particles are effectively fixed in position 
once deposited, there is a non-equilibrium distribution of particle positions and the 
kinetics are described by the process of random sequential adsorption (RSA). It is the 
latter situation with which this paper is concerned. 

Random sequential adsorption is one of the simplest ways in which pne can study 
deposition phenomena. In each time step a position for the deposition of a particle is 
chosen a t  random. If the chosen position is vacant, i.e. no particle deposited previously 
occupies or overlaps it, then the new particle is placed in the chosen position. If the 
particle cannot be placed then no deposit is made, the time step is over and a ~ n e w  
position is chosen for the next possible deposit. This process is analysed by looking at 
the evolution with time of the fraction of the surrace covered (‘the coverage’) and the 
distribution of the spaces between the particles. For a review of the literature on RSA 

models, see [ 1,2]. 
RSA captures the behaviour of many experimental systems: the adhesion of proteins 

and colloidal particles to uniform surfaces [3,4], the reaction of various polymer chain 
systems such as methyl vinyl ketone [SI, the formation of irregular conducting channels 
in cellular material [6] and the adsorption of non-ionic surfactants [7] are just a few. 

Perhaps lhe most interesting feature of RSA is the highly irreversible nature of the 
kinetics-nce a particle has been placed it is fixed for all time and will influence all 
subsequent attempted placements. It is this non-equilibrium, irreversible behaviour 
which makes many of the techniques developed for equilibrium statistical mechanics 
redundant. 
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If the particles being deposited are of finite size then, obviously, after a certain 
amount of time the surface will become full and no particle can be deposited in the 
spaces that remain. The surface is then said to be jammed or saturated. The packing 
of the particles in this limit is very different from that of equilibrium close packing. 

The wide range of experimental systems to which these models can be applied is 
reflected by the large number ofpossible models; objects of dimension D can be depos- 
ited onto a surface of dimension dprovided that D Gd. The ‘surface’ can be acontinuum 
or a lattice. 

The one-dimensional continuum model, which has been solved analytically [S, 91, 
is called the random car-parking problem. The cars are of unit length and the road is 
infinitely long. When the road is full all the gaps between the cars are less than unit 
length so that no further cars can be deposited on the line. 

The one-dimensional lattice model [5 ,  IO, 111 can also be solved exactly. In this 
model k-mers are adsorbed onto a line until all the spaces of size k or more are occupied, 
i.e. all the spaces which remain are less than or equal to k- 1 lattice sites long. This 
model has been applied successfully to various polymer chain systems [5 ] .  The results 
are qualitatively very similar to those obtained for the one-dimensional continuum 
model. In the limit k+m the continuum model can be recovered from the discrete 
model after suitable rescaling of the variables [12]. 

The placing of an object on a line divides the system into two independent systems 
which can be treated separately. It is this property, which obviously does not exist in 
two or more dimensions, that has made analytical progress in one dimension possible. 
Attempts have been made to bridge the gap between one- and two-dimensional problems 
by introducing a set of hierarchical rate filling equations [13,14] or by examining the 
problem on a Bethe lattice [15]. Unfortunately, these have not led to the solution of a 
two-dimensional problem and nearly all other studies have been numerical. On the 
lattice the coverage has been examined for different shapes [16, 171 and for squares of 
different sizes [IS, 191. In the continuum there are more possibilities: needle-like objects 
have been considered [20] for which there is no jamming limit, as it is always possible 
lo place another needle. Finite-sized shapes, for which the coverage is well defined, 
have also been examined on a continuum [2l, 221. 

in this paper we generalize the normal RSA continuum process so that the rate at 
which a particle is placed in a vacant position is dependent on the size of the empty 
space being destroyed and on the sizes of the two empty spaces created on either side 
of the particle. In section 2 this model is introduced and in section 3 a scaling theory 
is given for the case of a mixture of particle sizes being deposited with a power-law 
rate of deposition. Section 4 contains the exact solution of two models in which the 
particle is always deposited in the centre of an empty space. The models differ in the 
rate al which this occurs. In section 5 the results of two numerical simulations are 
compared: one, the standard ‘random car-parking problem’, and the other a model io 
which the rate of deposition is quadratic with a maximum at the centre of the empty 
space. The final section conlains some conclusions concerning this work and some ideas 
for future studies. 

2. The model 

The concentration c(x,  I )  of spaces of size x at time t obeys the integro-differential 
equation 
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ac(x, t )  
ar --C(X, t) 1; dip(z) jOx-'dy F(n-y-z, y lz) 

+ 2 Jrm dy c(y ,  t )  joy-' dzp(z)F(x, y - x - z l z )  (1) 

wherep(z) is the probability ,of attempting to deposit a particle of size z. F(x,ylz) is 
the rate with which a space of x+y+z is destroyed by the placement of a particle of 
size z creating two spaces x and y ,  given that it is a particle of size i that is to be 
deposited. The first term in equation (1) represents the destruction of spaces of size x 
and the second their creation from spaces of size y .  If one chooses F(x, y lz) = 1  then^ 
( I )  reduces to the standard RSA equation [9] .  I f  one takes zero-length particles, 
( p ( z )  = S(z)), then (1) becomes the standard binary fragmentation equation 1231. 

3. Scaling theory 

A scaling theory for this process can be developed by considering the deposition of a 
mixture of different sized particles. This can be achieved by choosing p(i) as 

where, to ensure that p(i) is normalized, we take y>O. We also need to define F(x, y l z )  
as 

(3) 

where p can take any value. Following the method of Krapivsky [9 ] ,  who solved this 
problem for F(x ,y l z )= l  (or,J=O), we write equation (I), for x < l ,  as 

F(x, VIZ) = (x + y  + z)P 

111 the integral we have replaced 1 with (y-s) '  for J~-x>  1. This approximation 

We can obtain an equation for the ath moment M a ( f ) ,  defined by 
is good in the scaling region we are about to identify. 

M.(f)=jom X"C(X, t )  dn (5) 

by multiplying (4) by x u ,  integrating with respect to x, and then rearranging. Notice 
that, whilst (4) is only valid for x <  1. we integrate between 0 and m to obtain M=(t) .  
This is possible because the contribution to the moments from the spaces with n> 1 is 
negligible in the scaling region. These manipulations yield 
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The scaling hypothesis for the distribution of empty spaces can be written as 
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c(x, 6 )  %S-'( / )D(x/s(t))  (7) 

s(l)%t-T when t>> 1. (8) 

where 

The scaling regime is then described by xc< 1, t>> I, but with c = x / S ( / )  remaining finite. 
We now see that the approximations made in obtaining the moment equation (6) are 
valid in this region. The moments M.(t) are connected to the scaling function via 

The exponent 0 can now be determined; it is given by 0 = 1 +a*, where a* is the 
moment of c(x, t) which is time-independent. By looking at (6) we see that a* is given 
by 

This equation has been obtained previously [ 9 ] ,  when it was noted that for y z 0  
there is only one solution for a*, that furthermore a*(y)< 1 and hence that B < 2 .  It 
is perhaps a little surprising that a* does not depend on p .  The second exponent can 
be obtained by inserting the scaling form (7) into the kinetic equation (4) and separating 
variables. After some simple manipulations this gives the exponent z as 

We need to impose the condition ,L?+ y +  I > O  in order to keep z positive. When this 
inequality is violated a singularity occurs in the scaling solution which is the analogue 
of the shattering transition i n  fragmentation models. Combining the results for the two 
exponenls together gives the coverage for large times as 

(12) = 1 - ~ ~ - ( l - = ' ) / ( P + v +  1) 

where a* is given by (10) and A is a time-independent constant. All initial conditions 
give rise to this behaviour in the scaling limit wit11 F(s,yIz) given in (3). 

4. Solutions 

In this section we present two solutions for the deposition of particles of size 1 on a 
line. This means that we take p ( z )  = 6(z- 1) and the kinetic equation (1) becomes 
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In this  section^ we will drop the third argument in F-it is redundant for problems 
where the particle sizes are monodisperse. At this point it is useful to make the following 
remark about systems of this type; when two models have rates F(x, J,) which differ 
only by a multiplicative function of x+y, they have the same saturated~state, but, in 
general, different kinetics. This means that all systems with F(x, y )  =g(x + y )  have the 
same saturated state; similarly, all systems with F(x, y )  = f (x+y)b (x . - y ) .  

We will present exact analytical solutions for two different systems where the particle 
is always deposited in the middle of the vacant space, i.e. where F(x, y )  is given by 

F(X, y)=f(X+J))b(X-y) .  , (14) 

In particular, we solve the cases where&)= 1 (model A) andf(x)=x (model B). As 
we indicated in the previous paragraph, both these systems have the same saturated 
state; the difference between them arises from the kinetics of the process leading up to 
that state. 

Model A 

Taking the F(x, y)  in equation (14) with f(x) = 1, and solving equalion (13)  via a 
generating function method, subject to the initial condition c(x, 0) = S ( x - L ) / L ,  where 
L is the length of the line at t =0, yields 

where N is determined via the relation 

,=inti log(L+ 1) } 
log 2 

and is simply the number of ‘generations’ of the deposition process. The constants 
{@k,k=1,2 ,._., N}aregivenby 

The coverage, defined by 

is given by 
N - 1  (r 

--1 du e-zrUN - I  + e-7/2 

,=o r !  

which takjng the limit t-ico gives 

2N- I 
S(m)=-. 

L 
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Hence, using (16), the coverage in the saturated state oscillates between 0.5 and I as 
L increases, with discontinuities at L=ZN- 1, where n=O, 1,2,. . . . We can expand 
O ( t )  for small f to reveal that O ( t )  - t /2L. 

Model B 

This model is defined by (13) and (14) witlif(x)=x. The resulting kinetic equation is 
more difficult to solve than that for model A. However we can again adopt a generating 
function method, giving a solution for c(x,  t )  as 

G J Ro~lgcrs and P Singh 

and 
N-1 k +  I 

c(x, t )  =- {e - " ' ~ ( X - L ) +  Ak8(X-W&) d e - 0 ~ ~ )  1 < x < L .  (21) 
L k - 1  3 - 1  

The coefficients {ct} are given by the recursion relations 

for k = 2 , .  . . , N -  I and s= 1 , .  . . , k and 
k 2-1 

with initial conditions 

c: = -c; = 1. 

The coefficients { A k }  are given by 

40, 
A h =  JJ - 

I-I W,+l' 

The expression for 'c(s, I )  gives the coverage at time t as 

which in tum gives the saturation coverage in equation (20). We can also look at the 
approach to the saturation coverage, where a simple analysis reveals 

This indicates that in the jamming limit the kinetics are controlled by the destruction 
of the smallest-sized empty spaces it is possible to destroy; those of size ( L +  1)2-N- 1. 
For small t the behaviour of a ( / )  is different to that in model A, with O(f ) - (L-  I ) f /  
2L. This means thal for L>>l,  O(r)-t/2, independent of L. 
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Figure 1. The diatribiiion of empty spaces in the jamming limit forp(;)=b(s- 1) for (a) 
F ( x , y ) = l  and ( b ) f l x , y ) = x y .  

5. Numerical work 

We have performed numerical siinulations of two systems where the deposited particles 
are all of the same size ( p ( z )  = S(z- I)). For both systems the distribution of gaps in 
the jamming limit is shown in figure 1. The F= 1 model is the standard continuum RSA 
model and gives a saturation coverage of 0.747 . . , . The second system, F(x, y ) = x y ,  
is one which we attempted, unsuccessfully, to solve analytically. As figure 1 illustrates, 
it has a different distribution of gaps in the jamniing limit to the standard model and 
has a saturation coverage of 0.732. . . . 

6. Conclusions 

We have generalized the standard conlinuum RSA model in one dimension so that we 
can deal with problems in which the particles are placed onto a line at a general rate 
which depends on the size of the empty space available and the position the particle 
takes within it. This means that we can study problems in which a particle is more 
likely to be placed in the middle of an empty space than at the edges. This is the 
physically more relevant~case; any amount of repulsion between particles produces this 
effect. Two problems in which the particles are always placed in the centre of the 
empty space have been solved exactly. We have also developed a scaling theory for the 
deposition of a mixture of particles with a particular deposition kernel. We found that 
whilst the exponent z depended on the rate of deposition, the exponent 0 was indepen- 
dent of the rate. Finally, we used a  numerical simulation to exhibit the difference 
between two systems in which particles of the same size were deposited, but with 
different deposition rates. We found, as would have been expected, that the saturation 
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coverage was smaller for the system that preferred to place particles in the centre of an 

G J Rodgers arid P Singh 

empty space. 
The ideas developed in this paper could be taken further by looking for analytical 

solutions for other rates F(x,yli),-such as (x+y+z )" ,  (x+y)"and ( x y ~ .  Models-such 
as these are more closely related to real physical systems and as such are of more 
interest to experimentalists. 
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